Quantifying the Circular Water Economy: The Case of Singapore

OBJECTIVE: To quantify the economic value of furthering & strengthening the circular water economy in Singapore. Thereby better informing policy makers, water managers and urban planners on costs and benefits of transition to more sustainable urban water management.

1. SINGAPORE'S URBAN WATER SYSTEM

Lever	2060 target	Demand	Supply
Reducing	Reduce per-capita water consumption to 124 liters		
water demand	 Today's consumption at 148 liters per-capita 		
	Secure 55% of Singapore's total water supply by		\wedge
Water reuse	NEWater		1
	 Today, up to 30% of total supply from NEWater 		
Retention of	Build of additional reservoirs		
water	Already 17 reservoirs in place today		

3. LINEAR WATER ECONOMY (LWE) VS. CIRCULAR WATER ECONOMY (CWE)

LWE leads to supply- demand gaps.	672711	740 762	942 933 ^{1,114} 1,033 ^{1,316} 1,152 ^{1,555} 1,291
CWE creates surplus of available water and lower overall consumption.	672 711	729 785	891 ^{1,048} 1,012 ^{1,233} 1,150 ^{1,469} 1,306 ^{1,772}

CWE water savings: **CWE cost savings:**

Reduced demand + additional NEWater + additional water retained Less cost to buy and/or treat water and wastewater + Savings on infrastructure investments (e.g. desalination plants, water treatment plants, etc.) + Economic growth by avoiding water scarcity

4. POLICY RECOMMENDATIONS FOR SINGAPORE (AND BEYOND) **Further Policy Strategies**

Continue Previous Strategies

- Collect every drop of water. Increase water catchment are from 2/3 to 90%.
- Reuse water endlessy. Increase water recycling rate through different technological measures.
- **Desalinate more seawater.** Continue R&D for more efficient & cost-effective technologies (e.g. energy
- Undertaking additional water efficiency measures (e.g. implementing strict water efficiency standards for relevant home appliances).
- Investing in additional research to further reduce costs of NEWater.
- Campaign promoting installation of green roofs.

Authors: Julian Kirchherr, Utrecht University; j.kirchherr@uu.nl; Paul Schott, Utrecht University, P.P.Schot@uu.nl; Martin Stavenhaaen Institute of Water Policy National I Iniversity of Sinaanore m stavenhaaen@u nus edu reduction).